Behavioral and biochemical effects of hydrostatic pressure changes on Acartia tonsa (Dana, 1848)

(Copepoda: Calanoida): A methodological approach

Jessica R. **Frost**, Charles A. Jacoby, Giselher Gust, Morten Holtegaard Nielsen, Robert W. Campbell and Michael A. St. John

Introduction

- Hydrostatic Pressure is a key variable influencing vital rates determining physiological limits on marine zooplankton
- Adaptations of Marine Zooplankton (i.e. vertical migration, food patches, niches)
- Buoyancy Control
- Technological Advances: Concept of relative density changes between fluid and device with depth

Potential Applications of Pressure Labs

- Effect of lipid compression on buoyancy control in copepods
- Effect of internal wave dynamics on copepod resting eggs in sediment
- Effect on bloom dynamics of diatoms (i.e. sinking and transfer rates)
- Effect on the degradation process as organic matter moves through the water-column to the deep-sea
- Effect on the physiology of vertically migrating species (e.g. medusae, *C. finmarchicus*)

Aim

This study aims to test a new type of shallow-water pressure lab through a pilot study on the behavior and biochemistry of *Acartia tonsa* under varying physical conditions.

These responses may be important influences on their ability to find and remain in a food patch at various depths.

Objective

- Expose Acartia tonsa to 4 different pressures in a step-wise fashion to simulate changes in depth.
- Questions addressed in this study:
 - 1. Do changes in pressure stimulate a behavioral response by Acartia tonsa?
 - 2. Do changes in pressure elicit a biochemical response by Acartia tonsa over short temporal scales?

Pressure Lab examples

Most previous pressure labs constructed of stainless steel

High pressure technology at the Department of Ocean Engineering I of the Technical University Hamburg Harburg

All equipment is designed for e pressure range up 6 550 bar

AB Meerestechnik der TUHH Lämmersieth 72 22305 Hamburg Deutschland

www.mt1.tu-harburg.de

H.Steffen@TU-Harburg.de Holscher@TU-Harburg.de Gust@TU-Harburg.de

Tel: +49 40 42804 5505 Fax: +49 40 42804 5514

Pressure Laboratory DLI 401

Mimmit, electric motor for operation under pressure

Pressure Laboratory DLII 1001

The slurper collects fluidic samples under pressure

Why use a shallow-water pressure lab?

- The shallow-water lab is part of a relatively new series of pressure labs from extreme to simple or from deep to shallow
- Useful tool to simulate the ocean mixed layer
- Helps us to better understand what happens to those carried to depth
 - Survival?
 - Indices to indicate how animals succeed given change
 - i.e. Altering protein concentration, which may affect growth rates and reproductive potential.

Shallow-water Pressure Lab

Sample Chamber

Material: Glass

Thickness: 1 cm

Max. Pressure:

10 Bar ~ 9.87 atm

Internal Volume: 9.4 L

Height: 45 cm

Inner Diameter: 16 cm

Hand Pump

Reservoir

Experimental Setup

Side profile of camera, motion rail profiler, light source, and shallow-water pressure lab.

Top View

Experimental Design

- Target species: Acartia tonsa
- TPressure Steps: 1, 3, 6, 10 Bar
- Filot Experiment: 22°C and 35 PSU
- Feeding History: Continuously Fed-
- Biochemical Measurements_In triplicate:
 Carbohydrates & Protein
- **Behavioral Measurements:**
 - Vertical Distribution &

Passive Sinking (>10 data points)

Experimental Methods

- TA. tonsa fed Rhodomonas baltica
- **✓** Approximately 200 CV copepodites 1-1
- Acclimation: 24 hours
- 7 12:12 Light/Dark Cycle

Light intensity: 5 μEin m⁻² s⁻¹

- SONY Handycam ® (DCR-PC6E) panhed every 10 cm in a vertical direction using LINOS® X-95 motion rail profiler
 - 25 fps
- Average time to apply pressure: 4.5 mins
- Total recording time for each pressure step: 60 mins
- Total recording time for experiment: 3.5 hrs

Biochemical Results Carbohydrate & Protein

Carbohydrate analysis performed as described by Dubois et al. (1956) and Herbert et al. (1971).

Protein analysis performed using Sigma-Aldrich bicinchoninic acid protein assay kit (product code: BCA-1 & B 9643).

Video Analysis of Behavior

Using VirtualDub & MATLAB:

- T 1. Levels
- 7 2. Grayscale
 - € 3. Invert
- 4. Locate particles in frame
- 5. Connect particles in neighboring frames using search radius & linear extrapolation of position
 - 6. Calculate motion (distance/time)

Video Analysis of Behavior Output

Video Analysis of Behavior

Distribution

Video Analysis of Behavior Sinking

Sinking Speed

<u> </u>	pecies	<u>Prosome length i</u>	mm mms ⁻¹
	Acartia claus	i 0.91	0.27
Parace	alanus parvus	0.67	0.60
Centro	pages typicus	1.27	1.0
Pseudo	ocalanus elong	gatus 0.92	1.1
Centro	pages hamatu	s 1.03	1.4
Temore	a longicornis	0.97	2.5
		Tiselius & Jonsso	n MEPS 1990

Acartia tonsa prosome length range

0.6-1.2 mm

Summary...

- Carbohydrate concentration decreased after pressure treatment.
- Protein concentration increased after pressure treatment.
- However, there were no significant differences among biochemical measurements at 0 and 10 Bars.
- No pressure effect demonstrated by the distribution or sinking video analyses.
- However, it seems that greater numbers of copepods were observed to passively sink at 10 bars as compared to 1 bar.

Take Home Message

The shallow-water pressure lab allows investigations into biological effects of pressure that still remain unresolved for marine zooplankton.

Future Activities:

- Larger species
- **Better** video quality
- Longer recording time

Acknowledgements

ICES/PICES/GLOBEC

Special thanks to the following for their invaluable assistance:

TUHH

- Marcel Klemm
- Florian Michl
- Volker Mueller

IHF

- Nike Diekmann
- Gudrun Bening
- Joachim Luetke
- © Emmanuel Acheampong

Eur-Oceans

CO-AUTHORS

Thank You!

Jessica Frost jessica.frost@uni-hamburg.de

Prof. Dr. Gust gust@tu-harburg.de