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Humans still out perform machine
recognition on digital images

e Why?

— Machine learning requires large clusters of
data
e Unbalanced data set size is an issue

— Recognition relies on 2D image features
e Sensitive to aspect of object

e Solution is 3D
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How experts do it

« Zooplankton can be identified using
taxonomic information

e Plus contextual data

— differences in the segmentation of the body
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Recognising zooplankton

 Recognising zooplankton to
genera is difficult with lack of
Information
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Confocal can provide good
reference images

Temora stylifera. (source: Buttino, Bay of Naples IT.,

® Confocal image imaged by confocal)
Temora stylifera:
male stage 6

* Image quality is
sufficient for

taxonomy

e An Image stack PN
provides 3-D éooye i
Information |
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Confocal

e Volumetric image
— Reveals structure

3D image of Temora stylifera.
(source: Buttino, Bay of Naples IT.)

(c) PF Culverhouse, R Williams &
| Buttino 2007



Problems

* Next slide shows how a plankton analyst can
identify Temora stylifera

 Demonstrates the severe problems a machine
program would have
— le., part image, overlapping images, elongated image,
ventral, dorsal aspects,

— development stages, male and females copepods
(morphologically different) etc etc.
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Temora stylifera. Scale bar 500 micron (source: Buttino, Bay of Naples IT., imaged by MIA-1)
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In-situ Imaging

Fast and sample high volume
High specimen count

Clutter, detritus (coastal seas)
Arbitrary view angle

Feature visibility is variable
— Taxonomic identification therefore variable

Contextual data available
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Generative models

Extract features from training data
Accumulate statistics of occurrence
Build models of objects

Assess models on unseen data

Bottom-up (data driven) inference

Similar to ANN approaches, but more
flexible
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Conceptual models

Extract knowledge from texts and humans
Organise Into rules, frames and logics

Validate Knowledge-based system
— Conflict resolution
— Incorrect assumptions

Pose queries to test KBS
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In-effective systems

« Generative models cannot easily take
contextual knowledge as they are build
directly from data, and its frequency of
occurrence

e Conceptual models cannot easily operate
on noisy real-world images

* A hybrid approach Is needed.
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A hybrid approach

USER ) |KBS
ENQUITIES [t Rules. f N : :
— Rules, Trames *Visual routines and

- Contexts & concepts, Attentional spotlight,

- Ontologies +Generative models

- Visual routine capacity

IMAGE and feature data

(bottom-up analysis)
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Hierarchical decisions

e Use taxonomic tree ‘Example
: . Phylum Arthropoda
— Scales well with complexity Subphylum Crustacea
G eopst,
— Well documented set of key Orcer %a'a”gi-‘ég
features Genus Temora

species stylifera

e Use contextual information

to constrain search
— Net mesh size

— Geographical location,
season, etc.
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Ontologies

* An ontology is a formal Catanoid i Q e farpactcoid g
specification of a - -
conceptualization head+ Tst head-+ 7\
(Gruber 1993). Ay 2“;’;3‘2'“ [

e An ontology contains [ [ |
the concepts that are : lpations j
assumed to exist in \ e e S o
some area of interest \ IG5 e /
and the relationships DAY~ movable T2
that hold among them. % i g, {

« Ontologies are e ',;'
designed for the ‘
purpose of knowledge Sample taxonomic key data for planktonic copepods
sharing, alignment and - differences in the segmentation of the body

reuse.
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e EXpert:
— Highlight part
— Extract 3D
— Label antenna
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Visual routines

 An IKBS can reason and model the
concepts of plankton genera and species

e IKBS poses questions to visual routines

 Visual features present in images need
matching

— Visual routines tuned to specific features
discover |locations in image

— Spotlight of attention directs visual routines
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A route to cognitive vision

e Generative models with geometric distributions
are the current state of art in machine vision

« Texture, morphological features and shape
based analysis are predominant in marine and
terrestrial specimen identification

« Cognitive vision provides a way of adding
— More contextual &

— Taxonomic knowledge to bear on recognition
— One-shot learning
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Progress

Collecting, imaging and labelling datasets
— done

3D Visual editor for feature extraction

— In progress

Ontologies for taxonomy

— In progress

Ontologies for low-level vision

— In progress

Cognitive system

— Call for partners for FP7 collaborative project
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