The lost generation:

Spring spawning and connectivity in the Georges Bank sea scallop population

Chad Gilbert, W Gentleman, C DiBacco, C Johnson

Fisheries and Oceans Pêc Canada Can

Pêches et Océans Canada

Chile, March 2011

What We Know About the Fall Spawn

Significant retention, exchange (*Tremblay et al., 1994*)

Inter-annual variation in physics matters *(Tian et al., 2009)* Factor of 5

Vertical Distribution matters (*Gilbert et al., 2010*) Factors of 1-5

Chile, March 2011

But What About Spring?

Scallops also spawn in spring (DiBacco, 1995)

Gilbert et al. (2010): Significant retention in spring

Objective:

Quantify contribution of spring spawn to population connectivity

Chile, March 2011

Model overview

3D particle-tracking model (Gilbert et al., 2010) Coupled with an IBM

Chile, March 2011

1. "Settlement Distribution"

Where do larvae begin settlement?

2. "Larval Connectivity Matrix"

 $\Box(i,j) = \#$ from bed j settling in bed i

GSC,GSQGSC,NERGSC,SF)
(NEP,GSQNEP,NEP(NEP,SF)
(SF,GSC)(SF,NEP)(SF,SF)
(UH,GSC)(UH,NEP)(UH,SF)

GSC, NEP, SF spawning beds UH – unsuitable habitat

Chile, March 2011

Fecundity

DFO – Years 1984-2004 – 3 Size-classes

(DiBacco, pers. comm.)		Fec. (eggs x 106)	
		Spring	Fall
Siz e	Small (50-95 mm)	21	36
	Medium (95-120 mm)	33	68
	Large (120-170 mm)	61	132

Fecundity is size-specific Fall matches previous estimates Spring is ~1/3 of reproductive output

Chile, March 2011

Estimating Abundance & Distribution

DFO & NOAA – Years 1996-2004 – 3 Size-classes

Chile, March 2011

Spawning Field

spawning field = \sum fecundity(size) * females(size)

spatial variation within subpopulations same distribution in both seasons spring 1/3 of spawning, fall ~2/3

Chile, March 2011

Transport & Connectivity in Fall

Simulated larval dispersal in fall Mortality rate: constant, 20% d-1

Chile, March 2011

Transport & Connectivity in Spring

Simulated larval dispersal in spring Mortality rate: constant, 20% d-1

Long PLD reduces survivorship (1/18)

Spring negligible for const. m.

Introduction – Methods – Results – Conclusion

Chile, March 2011

Transport & Connectivity in Spring

Re-ran spring simulation

Mortality rate: Q10 = 2

Spring connectivity maybe not negligible...

Chile, March 2011

Spring vs Fall

What portion of larval connectivity is from spring?

Snuin	$\sigma(0/)$	Spawn		
spring (%)		GSC	NEP	SF
	GSC	45	0	6
Settl	NEP	19	65	-
e	SF	7	4	0
	UH	36	41	38

Retained in metapopulation:

Fall: 5 Trillion Spring: 1.4 Trillion

20% of larvae settling in metapopulation are spring-spawned

Chile, March 2011

Summary

1. <u>Reduced fecundity</u> 2. Reduced retention 3. Reduced survivorship

• Spring fecundity estimates are conservative

Chile, March 2011

Summary

1. Reduced fecundity 2. <u>Reduced retention</u> 3. Reduced survivorship

Spring retention may be underestimated
Vertical distribution matters, but unknown!

Chile, March 2011

Summary

1. Reduced fecundity 2. Reduced retention 3. <u>Reduced survivorship</u>

• Mortality critical, but unknown!

Depends on several factors:

- 1. Predation
- 2. Abiotic
- 3. Food

Spring on GB:

- 1. More zooplankton
- 2. Cool, well-mixed
- 3. More phytoplankton

Chile, March 2011

Formal model forced us to examine assumptions closely

Spring spawn may contribute significantly to population (despite good, but non-quantitative arguments)

Need more study on:

- 1. Seasonal fecundity
- 2. larval depth-distribution in spring
- 3. Seasonal larval mortality rates

PLEASE?