"Using an Individual Based Model with four Trophic Levels to Model Fisheries Recruitment"

Fifth International Zooplankton Production Symposium Pucón 14-18 March 2011

Matteo Sinerchia^{1,2}, Tony Field¹, John Woods¹, Silvana Vallerga¹ and Wes Hinsley¹

Imperial College, London (UK)
 Istituto per l'Ambiente Marino Costiero (IAMC-CNR), Oristano (IT)

Outline

- Background
- Scientific challenge
- Strategy
- Model description
- Results from numerical experiments

Background

- Semelparous
- Fast growing
- Opportunistic

- The abundance of cephalopods in some areas has apparently increased relative to fish
- Highly variable recruitment

Scientific challenge

- Make predictions on squid recruitment
 - Phenotypic equations from reproducible laboratory experiments under controlled conditions
 - Behaviour
 - Physiology
- Model more realistically predator prey interactions
- Testing theories about the relationship between recruitment and ecosystem

Research strategy

- Build a predictive ecosystem model based on the hard facts from marine biology
 - Lagrangian Ensemble Recruitment Model (LERM)
- Individual Based Model integrated by the Lagrangian Ensemble Metamodel (1D)

Model food

Lagrangian Ensemble Recruitment Model LERM

- 2 dissolved nutrients (N):
 - Nitrogen Silicate
- 1 explicit diatom species (P)
- 1 explicit copepod species (Z)
- 1 explicit squid paralarvae species (S)
- 1 parametrised predator feeding on copepods (BP)
- 1 parametrised top predator feeding on squid (VP)

Lagrangian Ensemble Recruitment Model LERM

- Diatom
 - Based on a midsize diatom (cross-section diameter 20μm)
 - Photoadaptation
 - Cell division (C and Si)
- Copepod
 - Based on Carlotti and Wolf, 1998 model for Calanus finmarchicus.
 - Staged growth
 - Diel migration
 - Ingestion based on gut volume, digestion, gut passage time and assimilation
 - Dynamic allocation of C to protein and lipid
- Squid
 - Based on the physiology and behaviour of Loligo
 - Temperature dependent embryogenesis
 - Endogenous and exogenous feeding
 - Ingestion based on gut volume, digestion and assimilation
 - Dynamic allocation of C to protein and lipid
 - A squid recruits when it reaches 8mm in mantle length
- Top predators
 - Demography is set in the scenario using a series of exogenous equations
 - Abundance, size and vertical distribution
 - Trophic interaction is expressed by ingestion equations based on squid

Experiments

Experiments set at Azores site (41°N, 27°W)

• Annual surface heat budget is in balance (i.e. solar heating equals cooling to the atmosphere)

- The ecosystem is allowed to adjust to its attractor for 15 years:
 - Stationary annual cycle of external forcing (Bunker climatology)
 - Nutrients (NOAA Ocean Atlas)

➡ Virtual ecosystem follows a stationary annual cycle

- The ecosystem is allowed to adjust to its attractor for 15 years:
 - Stationary annual cycle of external forcing (Bunker climatology)
 - Nutrients (NOAA Ocean Atlas)

→ Virtual ecosystem follows a stationary annual cycle

- The inter-annual variation from the multi-year mean is small
 - P, Z, S biomass on 28th May was 3.7, 8.6 and 11.3 % respectively
 - Inter-annual variation in squid recruitment was 12% of the multi-year mean

Phytoplankton biomass

Herbivorous zooplankton biomass

Herbivorous zooplankton biomass

- Sobrinho and Isidro (2001) measured Z biomass off Faial Island (38°N, 28°W) between February and June 1998.
- Single peak in Z biomass in May
- Comparable biomasses

Month	OBS	LERM
	gC m ⁻²	gC m ⁻²
Feb	0.57 ± 0.09	0.48 ± 0.03
Mar	0.79 ± 0.11	0.46 ± 0.03
Apr	-	0.84 ± 0.02
May	3.56 ± 1.63	2.72 ± 0.08
June	0.61 ± 0.09	0.87 ± 0.06

Experiments

- STABILITY:
- SENSITIVITY OF RECRUITMENT TO:
 - predation,
 - competition for food (basal predator),
 - spawning magnitude

Predation on squid

(a)

- Squid mortality due to predation was the most significant factor affecting annual recruitment
- effect of predation on the squid population especially on the more abundant and slower swimming newly hatched squid
- 3 regions:
 - Density-dependent
 - Predation
 - Predation much higher than growth

Inter-population competition

(b)

Р

R

S

BP

- Density-dependent reduction in Z at low BP concentration
- Direct effect of food limitation at BP > 2,000 ind m⁻²
 - less carbon was transferred to the squid population
 - \rightarrow reduction in squid recruitment.
 - slower growth rate → squid more vulnerable to predation for longer (Ricker and Foerster, 1948)

Recruitment as a function of number of eggs laid

- Observation:
 - increased eggs production leads to decreased recruitment for *Loligo gahi* (Agnew *et al.*, 2000).

Recruitment as a function of number of eggs laid

- Lower survival with increased intra-population competition for food
- 100-400 eggs laid: mortality exclusively by predation,
- >400 eggs laid: combination of starvation and predation

Recruitment as a function of number of eggs laid

- Lower survival with increased intra-population competition ۲ for food
- 100-400 eggs laid: mortality exclusively by predation,
- >400 eggs laid: combination of starvation and predation

Conclusions

- Annual recruitment was an emergent property of the silmulation:
 - Food availability and composition
 - Inter and intra-populations competition
 - Speed of squid growth
 - Predation
- Hjort's critical period (Hjort, 1914)
- Interaction between density-dependent growth and predation determine density-dependent survival

 (Ricker and Foerster, 1948; Cushing and Shepherd, 1980)
- The method proved successful in providing a plausible description of the mechanisms involved in determining squid annual recruitment