

Gene expression analysis of time series collections of *Calanus finmarchicus* in the Gulf of Maine, NW Atlantic

by

Ebru Unal¹, Petra Lenz², David Towle³ and Ann Bucklin¹

¹Department of Marine Sciences, University of Connecticut, CT, USA ²Pacific Biosciences Research Center, University of Hawaii at Manoa, HI, USA ³Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA (dec.)

> 5th International Zooplankton Production Symposium Pucon, Chile

> > March 14-18 2011

Calanus finmarchicus Life cycle

Seasonally dominant zooplankton in North Atlantic (50-80%).

Pivotal sp in ocean food webs, model organism

Diapausing C5 copepodites in Winter (lipid rich)

Adult C6 stage in Spring, reproduction

- Non-diapausing population
- Low genetic diversity

www.frs.scotland.gov.uk

Gulf of Maine

Semi-enclosed sea, 3 major deep basins, isolated > 200m

Highly productive food web, commercial fishery

In winter: Vertically well-mixed April-November: Stratification

Influenced by NAO

Sample collection:

Surface tow & deep tow (WB7)

Live individual copepods flash frozen in liquid nitrogen

EST microarray assay

Expressed Sequence Tags (ESTs) : Small DNA sequences identified from the cDNA (complementary DNA) libraries Microarray: A set of short probes generated from ESTs printed on a slide. DNA microarray assay: Detects transcription at mRNA level based on the principle of base-pairing hybridization.

Thousands of genes at a time!

Experimental design

Array printing: 1,000 ESTs of known function "Calanus physiology microarray".

Array hybridization: 15 arrays, 4 comparisons, normalized (Lowess).

Comparison	RED dye (635 nm)	GREEN dye (532 nm)	Sampling date	Replicate array #
Α	Deep female	Surface female	April, 2008	4
	Surface female	Deep female	April, 2008	2 (Dye-swap)
В	Surface female	Deep CV	April, 2008	3
	Deep CV	Surface female	April, 2008	2 (Dye-swap)
С	Deep CV	Surface CV	Oct, 2006	2
D	Deep unstaged	Surface female	Oct, 2005	2

Mount Desert Island Biological Laboratory (MDIBL), Maine, USA

Results

Fold-change analysis of relative fluorescence

Median log ratio fluorescence (Log₂): Index of fold change in activity

Negative: A decrease in activity (Down-regulated)

Positive: An increase in activity (Up-regulated)

Gene Discovery Principle Component Analysis (PCA)

Low-dimensional data analysis. Genes are plotted in a space defined by the components that are derived from the data.

Each axis (i.e. Principle Component) represents an expression profile that explains variance as Median Log ratio (635/532).

Volcano plot of t-test and PCA

Differentially expressed genes *Comparison A: Deep female - Surface female*

Gene Ontology (Blast2GO)

Biological Process

UP-REGULATION LEVEL 4

Signal transmission (1) Cellular macromolecule metabolic process (3)

Cell differentiation (2)

Macromolecule biosynthetic process (2)

> Cellular biosynthetic process (3)

Gene expression (2)

Protein metabolic process (2)

Anatomical structure morphogenesis (2) - Regulation of cellular process (1) - Nucleic acid metabolic process (2) - Transport (2) - Amino acid metabolic process (2) - Cytoskeleton organization (1) - Lipid metabolic process (1) - Protein localization (1) - Cellular nitrogen compound metabolic process (1)

Comparison A: Deep female - Surface female

PYRIMIDINE METABOLISM

•

-

•

•

is in

Target Gene Approach

Genes identified in physiological studies of *Calanus finmarchicus** : Lipid catabolism (1, 2), krebs cycle (3), electron transport chain (4), anaerobic metabolism (5), amino acid catabolism (6).

Target Gene Approach An example

		Comp A	Comp B	t-test
Function	Gene name	Mean Log	Mean Log	p-value
Lipid catabolism	Hydroxyacyl-CoA dehydrogenase	0.396	-0.902	0.0210
	Catalase	0.972	-0.206	0.020
Krebs cycle	Citrate synthase	0.090	-0.581	n.s.
Electron transport chain	Cytochrome-c oxidase I	-0.369	1.378	n.s.
Anaerobic metabolism	Lactate dehydrogenase	-0.628	-0.273	0.0003
Molting / development	Ecdysteroid receptor	0.566	-0.784	0.019
Egg production	Vitellogenin receptor	0.769	-0.674	0.048
Digestive enzymes	Exo-1,3-beta-glucanase	-0.962	1.408	0.0051
	Beta galactosidase	-0.639	0.518	0.031
	Trypsin	0.539	-0.111	0.009

Comparison A: Deep female - Surface female Comparison B: Surface female – Deep cV **Functional analysis** C. finmarchicus life history

Up-regulation in deep females:

DNA replication, developmental processes *Molting from CV to female?* Embryonic development

Egg maturation?

Up-regulation in surface females:

Carbohydrate transport Stress response

Feeding status?

Environmental pressure?

- Genome-wide patterns of gene expression using DNA microarrays provide powerful means of identifying high responder genes among thousands of candidate genes.
- DNA microarray technology accelerates the search for indicators of the key biochemical and physiological processes responsive to environmental change.
 - Microarrays can also test hypothesis of differential expression of target genes chosen based on their physiological function.
 - Microarray analysis of time series collections of *Calanus finmarchicus* in the Gulf of Maine is identifying genes that may control critical physiological life history processes.

Acknowledgements

- Chris Manning and Jason Beaudet (University of New Hampshire)
- Patrick Hassett (Ohio University)
- Andrew Christie (Mount Desert Island Biological Lab, Maine)
- Chris Smith (Mount Desert Island Biological Lab, Maine)
- Paola Batta Lona (University of Connecticut, CT)

Funding provided by:

- University of Connecticut
- NSF Biological Oceanography Program / US GLOBEC
- Center of Ocean Observation and Analysis (COOA), University of New Hampshire

