

New methods for using a continuous imaging particle analyzer (FlowCAM®) for the analysis and classification of zooplankton

Harry Nelson Director of Aquatic Sales & Marketing Fluid Imaging Technologies

Fluid Imaging Technologies

Founded – 1999

Vol. 168: 285-296, 1998

- Maine, USA (BLOS)
- Flow Cytometer And Microscope (FlowCAM)
- 300+ FlowCAMs sold
- Product Development
 - Depth-of-Focus Technology
 - VisualSpreadsheet 1.0, 2.4
 - Submersible FlowCAM

An imaging-in-flow system for automated analysis of marine microplankton

MARINE ECOLOGY PROGRESS SERIES

Mar Ecol Prog Ser

Published July 9

Christian K. Sieracki*, Michael E. Sieracki, Charles S. Yentsch

Bigelow Laboratory for Ocean Sciences, PO Box 475 McKown Point, West Boothbay Harbor, Maine 04575, USA

ABSTRACT: Present automated systems for counting and measuring marine plankton include flow cytometers and in situ plankton video recorders. Neither of these approaches are optimal for the microplankton cells which range in size from 20 to 200 µm and can be fewer than 10⁴ 1⁻¹. We describe here an instrument designed for rapid counting, imaging and measuring of individual cells and particles in the microplankton size range from cultures and natural populations. It uses a unique optical element to extend the depth of focus of the imaging lens, allowing a sample stream flow rate of 1 m min⁻¹. The instrument stores a digital image of each particle along with real time fluorescence and size measurements. An interactive cytogram links a dot-plot of the size and fluorescence data to the stored cell images, allowing rapid characterization of populations. We have tested the system on live phytoplankton cultures and bead standards, proving the system counting and stang accuracy and precision. The system provides images and issue distributions for cultures or natural marine samples. It has been used successfully at sea to continuously monitor particles show the underway. It may prove useful in studies of plankton community structure, ocean optics and monitoring for harmful algal species.

KEY WORDS: Imaging · Flow cytometer · Microplankton · Binary optical element · Cell counting · Cell sizing · Natural populations · High rate · Cultures

Plankton Size Spectra

Flow and Imaging Cytometry bacteria, phytoplankton, protozooplankton

FlowCAM Users

33 Countries (4 Pending)

FlowCAM Users

Eilat, Israel

University of South Florida

Bigelow Labs

Univ Sao Paulo

Tara Oceans Project

FlowCAM Models

Bench Top

Portable

FlowCAM Models

Submersible FlowCAM

FlowCAM Specifications

Particle sizes – Imaging – 3 µm to 2 mm \triangleright Objectives – 20x, 10x, 4x, 2x Flow Cell – 50 µm to 2 mm For Zooplankton "FOV" Flow Cell >300µm, 1 mm, and 2 mm Processing Capability – Flow - .1 ml/min to 12 ml/min Density – 5,000,000 particles/ml (Auto Trigger)

FlowCAM Features

- Continuous imaging (1-20 frames/sec)
- Can be used in laboratory or in-situ
- Size and shape info for all particles/cells
- Multiple Methods of Image Acquisition
 - > 2 Channel Fluorescence/Scatter detection
 - Continuous imaging (1-20 frames/sec)
- VisualSpreadsheet[©]
 - 30+ Image Parameters collected and measured
 - Image Recognition
 - > Automated Identification, Classification & Enumeration

Image Collages exportable to Zoo/PhytoImage

Raw TIF File

FlowCAM Applications

- Aquatic Plankton Research
 - Discreet or Continuous Sampling
 - In Lab
 - Cruises
 - 🖒 In situ
- HAB Monitoring
- Culture Studies
- ZM/QM Veliger Detection & Enumeration (Cross Polarization)
- Water Treatment (Drinking)
 - Plankton Monitoring T&O and Cyanobacteria
 - Particle Removal Analysis
- Ballast Water Testing & Research
 - Viability Analysis
- Algae-to-BioFuels
- Training and Education

FlowCAM Applications (Industrial)

- Pharmaceutical
 - Parental Drugs, Drug Formulations
 - > 21 CFR Compliant
- Food
 - Particle Size & Shape Analysis
- Yeast Analysis
- Abrasives
 - Particle Size & Shape Analysis
- Chemical
 - On-line Quality Control and Research
- Algae-to-BioFuels
 - Lipid Analysis (Nile Red), Counting, Bio Reactor Contamination

Zooplankton Challenges

Large particles settle quickly
 Large particles flow outside camera FOV
 Agglomeration of particles

 (esp. fixed samples)

 Camera view area (4.2 mm x 3.6 mm)
 Two dimensional image/Particle orientation

Zooplankton Set-up

> 1 or 2 mm 'FOV' Flow Cell

Draw sample from beaker With Stir Bar

- Syringe Pump
- Draw sample vertically
- > Add surfactant to sample

Integrated Syringe Pump

Reports N	otes	Run Summ	Building Sto	PM	T/Scatte
Load Cap	ture	Flow Cell	Fiuldics	Camera	Filter
Settings					
Sample volume 25 ml (sy		ml (syrin	ml (syringe size 1.00 ml) ml/min (0.010 to 20.000)		
		ml/min (l			
	10,000				
AutoImage Rate	8	frames pe	er second		
Estimated Efficien	cy and Rur	Time			_
Efficiencu	107.0	nercent	Warning: rec	commended effi	iciency
Emclency	101.0	percent	exceeded		
Run Time	5.00	minutes			
Priming		-	Sample Dilut	ion	
Priming Method:			The sample fluid was diluted		
 machine prime manual prime with sample 			or concentrated		
		mple			
🔘 manual pr	ime with no	n-sample			
			-		

A 4 6 A	00024	and the second se	Read To and
115 8 11	911136	CODV	1.1.1
			N 3 0
		Contraction of the local division of the loc	

1 of 1

Total: 83

Saved

File Edit Sort Filter Statistics Show

170.4 um	
81	

Selected: 1

Sort: Length

a)

渺

Z+ Z· Z1 🖊

Show All

🖉 Particle Prop	erties 🛛 🔀
Particle ID	81
Area (ABD)	57669
Aspect Ratio	0.55
Average Blue	72.70
Average Green	93.14
Average Red	96.67
Circle Fit	0.00
Compactness	32.87
Convex Perimeter	1910.94
Diameter (ABD)	270.97
Diameter (ESD)	602.86
Edge Gradient	0.00
Elongation	101.24
Filter Score	0.00
Length	734.65
Perimeter	5005.84
Sigma Intensity	41.56
Sum Intensity	2.63e+006
Transparency	0.55
Volume (ABD)	1.04e+007
Volume (ESD)	1.15e+008
Width	406.27
1	100 um

Classified: 0

- - ×

33 Image Parameters

VisualSpreadsheet

Automated Recognition Algorithm

Field Values			
Name	Aspect Ratio		
Filter Min	0.20		
Filter Max	0.80		
Data			
Min	0.19		
Max	0.80		
Mean	0.57		
Std Dev	0.18		

- Determine Min/Max and Mean of Parameter
- Develop scale using Std Dev of the particle parameter as the base to 'Normalize Values' of Attribute – $(u_i - x_i) / \sigma_i$
- Calculates Image 'Filter Score' based on **'Distance' parameters are from Normalized** Means
- Classifies Images based on Filter Score
- Repeat, in order, for next Class

FlowCAM Moving Forward

1/2 X Magnification Front Light LED Array

Front Light

Back Light

FlowCAM Moving Forward

Back Light

VisualSpreadsheetTM Moving Forward

C. Add new particle properties to VisualSpreadsheet

•First develop a particle property test set of images with many 'standard' shapes.

Add filled area and shape properties based on perimeter and filled area.
Add alternative size measurements such as Martin diameter and chord lengths.
New BioVolume Formulas (Cylinders, Rods, etc.)

Add convexity measures based on perimeter and on area measures.

D. Develop new library/classifier infrastructure

Method to *share* training sets, e.g., using libraries in their current form.
Create a classification generator, probably outside VisualSpreadsheet, that builds a classifier from some training sets. This generator will use OpenCV.
The classification generator will include standard methods to create and test classifiers including cross-validation and display of confusion matrices; the user should be able to click on the cells in the confusion matrix to see the particle images for that cell.

•Output of the classification generator will be classifiers that can be used within VisualSpreadsheet just as filters are now used.

Thanks To:

Fluid Imaging Technologies

Matt Duplisea – Manager of Engineering Ben Spaulding – Laboratory Manager Bob Grimm – Senior Electronics Engineer

