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Workshop format 
•  8:30 Introduction by Convenors 
•  8:35 Cabell Davis (Invited (W5-7254) 

 – presented  by Mark Benfield 
•  9:00 Lars Stemmann (W5-7009) 
•  9:15 Elvire Antajan (W5-7192) 
•  9:30 Harry Nelson (W5-7223) 
•  9:45 Catarina Marcolin (W5-7334) 
•  10:00 Coffee/Tea Break  

–  Posters: Xiaoxia Sun (W5-7149), Karen Manriquez (W5-7186) 
•  10:30 A beginners guide to automatic visual 

plankton identification 
•  11:30 Open Forum & Discussion  
•  12:30 Workshop ends 



A beginners guide to 
automatic visual plankton 

identification 



Summary 

– The 1-D case flow cytometer 
– 2D visual features  
– Scanners and imagers 
– Software 
– Operational process 
– An example 
– Applications 
– Machine performance 



The 1-D case – flow Cytometry  

 Fig.1 Cytosense image in flow examples of two phytoplankton and 
their accompanying laser fluorescence traces (source: G.Dubelaar 
Cytosense product flyer, 2006).  



Scanning Flowcytometry 

 Fig. 2 Bottom: ‘‘Nitschia’’ type colony of 4 symmetrical cells (photo from: Gerhard Drebes, 
Marines Phytoplankton, 1974) Top: corresponding CytoSense 1D scan consisting of 5 
signal profiles. Circles: scattered light captured at near forward angles; diamonds: scatter at 
sideward angles; dots: red coloured fluorescence (emitted by the phytoplankton basic pigment 
chlorophyll a); black line: orange fluorescence (predominantly from accessory pigments); grey 
line: green/yellow fluorescence (typically by some ciliates and cysts). (source: J. Env. Biol (2004) 
6. 946-952). Note the green box encloses the ‘signature of one colony individual. 



 Fig.3 (a) distributions of 20 groups of particle in Cytosense analysed water 
sample, (b) group labels assigned to sample groups (source: J. Env. Biol (2004) 
6. 946-952) vertical scale is individuals per ml. 



2D analysis – scanners etc. 

•  Uses digitised images 
•  Several commercial products (FlowCAM, 

ZooSCAN, toolsets for microscopy) 
•  Several free toolsets (Zoo/PhytoImage, 

ZooProcess, & Weka, Tanagra for 
statistical analysis 



Scanners 

Bespoke Scanners (from Picheral, 2007) 



•  Specimens are 
imaged on a scanner 
– Can be stained 

•  ZooImage (shown) & 
Zooscan automate 
identification 

Using a scanner 

Image: Culverhouse 2007 



Zooscan 

The Zooscan instrument (from Picheral, 2007) 



Image feature extraction 

•  Grey-level equalisation 

Zooscan Normalised image (from Picheral, 2007)  



Image feature extraction 

ZooProcess feature extraction (from 
Picheral, 2007) 

Image (from Picheral 2007)  overlaid with  
bounding box and major/minor axes  



Image feature analysis 

Plankton Identify (from Picheral, 2007)  

• Feature sets are extracted for each object 
• These can then be analysed for clusters (using multi-dimensional clustering tools 
such as SVM, Random Forest, LDA) 



An example 

CEH.01-07-02.p7+B2.A showing scan of mixed zooplankton  
(source: Di Mauro, Mar del Plata, AR)  



An example 

CEH.01-07-02.p7+B2.A showing a small sample of copepods  
drawn from previous slide 



An example 

Fig.12 Morphological data extracted automatically from CEH.01-07-02.p7+B2.A 

(in Fig.11).  



Training/Testing a classifier 

•  Expert selects specimens for training set 
–  Identifies 20-50 examples of each class 

•  Choose classifier  
•  Random Forest –fast to train, cannot over learn 
•  Support Vector Machine – slow to train 
•  ANN – moderate to train, can over learn 

•  Train and test cycle 
– Confusion table 
– Calculate recall & precision 



Operational use 
•  Collect specimens, record ‘metadata’ 
•  Fix, flush detritus or stain 
•  Subsample  

–  to give ~200 specimens per aliquot 
– Size fractionate 

•  Scan, extract features, run classifier and 
record results 
– ESD, and other per specimen measurements 
–  Identity (and confidence) 

•  Export to spreadsheet 



Applications 

Fig.13 example analysis using ZooImage (from 
www.pices.int/publications/presentations/Zoopl%202007/Zoop%202007%20S9/S9_Grosjean.pdf) 



Application examples (cont’d) 

Fig..14 Example analysis using ZooImage and FlowCam 
(from Zarauz et al. 2007).  



Application examples (cont’d) 

Fig.15 Example Zooscan analysis (from: Picheral  2007a)  



(cont’d) 
Fig.16 Example Zooscan time series 

analysis (from: Gorsky et al 2005)  



Application examples (cont’d) 

Fig.17 Further examples of Zooscan time series analysis 
(from: Gorsky et al 2005)  



Zooimage run through 



Data set example 
Roxana di Mauro, 
INIDIEP, 
Mar del Plata, 
Argentina. 

•  Sample EH0606 was taken from waters off the Buenos 
Aires province in 2006 using a 200um net. 

•  email:rdimauro@inidep.edu.ar 



Machine performance 

"   HAB Buoy, 26 species  65-90% 
"   Zooscan, 40 groups (semi-automatic) 75-85% 
"   SIPPER, 5 groups 75-90% 
"   Video Plankton Recorder,>7 groups 72% 
"   Cytosense, 20-100 groups,  

"   All can process many 1,000 objects per hour 

27	




Conclusions for automatic visual 
plankton identification 

•  Performance OK for ecology 
–  Flow cytometry – 60 groups 
–  Zooscan – semiautomatic >40 groups 
–   Zoo/Phyto Image - 20-30 groups  

•  Clutter and detritus can cause problems 
•  Can make useful tools for ecology 
•  Semi-automatic  

–  Keeps ecologist in the loop 
–  Reduces false positive/negative rates 



Open Forum & Discussion 



So how about sorting manually? 

70 micron	
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HAB buoy 
images: 

Rià Arousa, 
N. Spain 

June 2005 

Microplankton 

(composite)	


Its hard	




Human factors 
Human performance in identifying and sorting organisms is 

affected by several psychological factors:  

(a)  Human short-term memory limit of five to nine items, 
(b)  Fatigue and boredom: severe loss of categorisation 

performance (> 50% error!!) 
(c)  Recency effects where a new classification is biased toward 

those in the set of most recently labels and  
(d)  Positivity bias, where specimen identification is biased by 

one's expectations of the species likely to be present in the 
sample.  

Context and other prior cues to category speed recognition 
significantly. 



Human Performance 



Ocean Weather Station India 1975 

   SCOR WG130 
experiment 

   Zooplankton 
identification  

  by human analyst 
and 
  by Zooscan 
machine 

 Original data Bob 
Williams from OWS India 
May 1975  

 0-500m LHPR trawl 
 22 net samples 
 6 for humans & 
machine comparison 

Source: SCOR WG130: Automatic Plankton Identification 



WS India categories 

•  Fixed samples  
in inspection trays 

•  Mixture of taxa  
and genera 

•  Discrimination 
– Some easy 
– Some hard 



OWS India: Analyst tally count plot 

21 experienced analysts 
over 700 specimens, 
in 6 samples 

Categories: 
1.  Appendicularia  
2.  Chaetognatha  
3.  Calanus finmarchicus  
4.  Euchaeta norvegica  
5.  Metridia lucens  
6.  Oithona spp.  
7.  Copepoda: small  
8.  Euphausiacea:  

 Adults + furcilia  
9.  Euphausiacea:  

 Calyptopis  
10. Ostracoda  
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Source: SCOR WG130: Automatic Plankton Identification - unpublished 



Human Performance Conclusions 

– People are not perfect identification machines 
•  Usually good at tallying (specimen counting) 

15 of 21  > 90% repeatable [mean 700 specimens] 

•  Can be inconsistent at binning (identifying) 
 13 of 21 > 90% self-consistent  
–  Experts are highly self-consistent >0.9 ICC 

 (Intraclass correlation coefficient) 
– Novices are not self-consistent 0.03 – 0.76 ICC 

–  Inter-analyst variation is high 



Open Forum & Discussion 

•  Machine performance 
– Throughput > 1,000 specimens per hour 
–  false positive/false negatives (confusions) 

•  50% to 95% binning by category 
•  100% tally count 

•  Human performance 
– Throughput <300 per hour 
– 70-96% self consistency at tally counting 
– Can be poor (<80%) at binning consistency 



The Future 

•  Challenges include 
– Validating training data using scarce human 

expert resources 
– Widespread Uptake of automation 

•  Funding research in this area 
– Cross disciplinary 
– Difficult for referees to review 
– Needs more support 



Please join the RAPID group 



Discuss! 
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