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1. Upgrade to the Sequential Regime Shift Detection Method 
The sequential regime shift detection method described in Rodionov (2004) was based on the 
assumption that observations in the series are independent of each other. Many ecological 
indicators, however, exhibit serial correlation (also referred to as red noise). Due to the presence 
of red noise, these time series are characterized by long intervals when the observations remain 
above or below the overall mean value. These intervals can be easily misinterpreted as genuine 
regimes with different statistics, as illustrated in Fig. 1. 
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Fig. 1.  Realizations of a) white noise process with a shift in the mean 

at t =21 from -1 to 1, and b) red noise process with AR1 = 0.8. The 
shift at t = 29 in the latter case would be statistically significant at 
the 3·10-9 level, if the data points were independent. 

 

There are two approaches to deal with the serial correlation. The first approach is to reduce 
the degrees of freedom in calculation the significance level of the shifts proportionally to the 
serial correlation. The second approach is to use a prewhitening procedure, which consists of 
removing red noise from the time series prior to applying a regime shift detection method. Both 
approaches require an estimation of lag-1 autoregressive coefficient (AR1). The problem is that 
when regime shifts are present, using the entire time series often leads to overestimation of AR1. 
A possible solution to this problem is to break the time series into subsamples, so that the 
majority of them do not contain change points, and then use the median value of all AR1 
estimates.  

It is well-known, however, that the conventional estimators, such as the ordinary least 
squares (OLS) or maximum likelihood techniques, yield biased estimates for AR1, particularly 
for small samples. Rodionov (2006) discusses two procedures of bias correction of the OLS 
estimator for short time series. The first procedure is called MPK after Marriott, Pope and 
Kendall, who proposed a formula for the expected value of the OLS estimator of AR1. The 
second procedure, called IP4 (Inverse Proportionality with 4 corrections), is based on the 
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assumption that the first approximation of the bias is approximately inversely proportional to the 
subsample size and is always negative. Both procedures are included in the new version of the 
sequential regime shift detection method (Fig. 2). The software can be downloaded from 
http://www.beringclimate.noaa.gov/regimes. 

  

       
 

     Fig. 2. Entry form of the regime shift detection method. 
 
 

Extensive Monte Carlo experiments have demonstrated that the MPK and IP4 bias 
correction techniques produce similar AR1 estimates for subsample sizes greater than 10. For 
smaller subsample sizes, however, IP4 substantially outperforms MPK in terms of both the 
magnitude of the bias and variability of the estimates.  

To illustrate the effect of prewhitening on regime shift detection, the method was applied to 
annual series of the Pacific Decadal Oscillation (PDO) index, 1900-2005. Figure 3 illustrates 
changes in AR1 estimates depending on the bias correction technique and subsample size. The 
MPK and IP4 estimates are practically the same for subsample size m > 11. The estimates remain 
relatively stable at about 0.45, as m increases to 27. For greater m, AR1 estimates jump to a 
higher level of about 0.60. This behavior of AR1 is typical for the time series that represent a 
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mixture of red noise with shifts in the mean. It shows that a characteristic time scale of the PDO 
regimes is about 25-30 years. 
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      Fig. 3.  OLS estimates of the annual PDO index with no bias correction and        
using the MPK and IP4 techniques. 

 
After prewhitening, statistically significant (at p < 0.01) regime shifts in the PDO are still 

detected in 1948 and 1976, although their magnitudes are smaller than those in the observed time 
series (Fig. 4). The red noise component (Fig. 4c), which accounts for about 25% of the total 
variance in PDO, enhances the shifts. The overall conclusion is that the PDO appears to be more 
than just a manifestation of red noise, as was suggested in some recent publications (Rudnick and 
Davis, 2003; Hsieh et al., 2005). 
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Fig. 4. a) Annual PDO index, 1900-2005, with a stepwise trend, b) the same 
time series after prewhitening, and c) difference between the time 
series in a and b.  

 
 
2. Vitus: Knowledge Management System for the Bering Sea  
An increasingly large number of ecological indicators call for methods to deal with the 
information overload. One large group of methods tries to resolve this problem by reducing the 
dimensionality of the system. This group includes principal component analysis, singular value 
decomposition, multidimensional scaling and other methods. These methods proved to be useful 
in analysis of large sets of indicators (e.g., Hare and Mantua, 2000), although there is often a 
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problem in interpreting the results. Another important drawback of those methods is that they do 
not preserve information about the relationships between the indicators. 

An alternative approach to the information overload is to use a tool that can help manage 
information in such a way that only the information relevant to the problem or question at hand 
is provided to the user at any given point of the analysis. With this in mind, a prototype of a 
knowledge management system for the Bering Sea (“Vitus”) has been developed. The system 
itself is far from its completion, its data and knowledge bases are not filled, but about 80% of its 
functionality is in place. It is written in VB.NET with the use of several off-the-shelf Microsoft 
products: Word, Excel, Access, and Visio.  

The major components of Vitus are: Data Explorer, Rule Explorer, Inference Engine, 
Graphical Interface, Search and Reporting Facilities. In many respects, Vitus is similar to an 
expert or decision support system, but unlike those commercial expert systems that I am familiar 
with, both the knowledge presentation and inference process are more transparent to the user and 
designed to be used in environmental research.   

The Data Explorer (Fig. 5) organizes information about indicators based on geographical 
hierarchy. The user can easily create his/her own geographical domain with the necessary level 
of details. The data for each variable is kept in a separate Excel file and the descriptive 
information in a Word file. The user can see a list of rules, for which a selected variable 
participates in the IF or THEN clauses (Fig. 6). With a click of the mouse, the variable can be 
inserted into the project, which is visualized as an influence diagram (Fig. 7).  

 
 

 
 

Fig. 5. Data Explorer interface. 
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Fig. 6. A list of rules that describe factors affecting walleye pollock recruitment. 

 

 
Fig. 7. Part of the influence diagram for walleye pollock recruitment. 
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The domain knowledge is presented in the form of IF-THEN rules and is controlled via the 
Rule Explorer (Fig. 8). The number of variables in the IF part of a rule is unlimited. For example, 
a rule may look like 

IF ENSO event = warm, 
AND Aleutian low circulation type = W1, 
THEN SAT at St. Paul = above normal; CF = 10. 

Here CF is the confidence factor for the rule (more about it is below). It is important to note that 
the data and code for each rule is placed in a separate Excel file. Therefore, although the IF-
THEN form is default, the user can write his/her own code to express the relationship between 
the IF and THEN variables. For example, the user can program the Ricker stock-recruitment 
formula, or use linear regression instead of a simple IF-THEN relationship. Another advantage 
of this rule information storage is that the user can easily experiment with each rule separately 
and develop a better feeling of confidence in it.  
 

 
Fig. 8. The Rule Explorer. 

 
When the influence diagram is prepared, the user may run the project in the forecast or 

hindcast mode to infer the value of the target variable in a given year (Fig. 9). During this 
process, the system asks for the information about the variables in the terminal nodes of the 
diagram (Fig. 10). To facilitate the answer to those questions, the user is provided with the 
access to the data and descriptive information about the variable and related rule. The user can 
also search for any other pertinent information (Fig. 11).  

Previous experience of working with climatic expert systems (Rodionov and Martin, 1996; 
1999) showed that, in assigning confidence factors to the rules, it is important to maintain the 
relative importance of each rule in the system. In other words, it is not the numbers themselves, 
but the consistency in procedure of their assignment, should be of major concern to the user. 
Therefore, although the CF is equivalent to the subjective probability, whenever possible, it is 
recommended to estimate its value based on the formula: 

CF = (P(C | e) − P(¬C | e)) * 100%, 

which is the difference between the probability of category C of the variable given the evidence e 
and probability of any other category of the variable given the same evidence e, expressed in 
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percent. When CF = 0, it means that observing e will not change our prior confidence (if any) in 
C. The value of CF = 100 means that we can be 100% confident in C, given the evidence e. The 
confidence factors, calculated using the above formula, should be adjusted for the number of 
observations. The formula for adjustment (A) used here is as follows: 

A = 100 − log (N)/2 * 100, 

where N is the sample size. 

 
 

Fig. 9. Running the project in the forecast mode. 
 

As an example, Table 1 shows the contingency table for the Pacific/North American (PNA) 
teleconnection index and North-South winds at St. Paul. The CF for anomalously strong 
northerly wind in the case of positive PNA will be  

CF (Wind+ | PNA+) = (17/24 – 7/24) * 100%  = 42, 

and after adjustment 

CFadj (Wind+ | PNA+) = 42 – 100 – log ( 24)/2 * 100 = 42 – 31 = 11. 

The value of CFadj (Wind–  | PNA–) is calculated similarly, so that the rule for these two 
variables will be as follows 
IF PNA index = positive (negative), 
THEN NS wind anomaly = positive (negative); CF = 11 (9). 
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Table 1. Contingency table for the Pacific/North American 
teleconnection index and North-South winds at St. Paul (Pribilof 
Islands). Both variables are broken into two categories of above 
and below normal values. Data: 1949-2005. 

NS wind anomaly PNA + PNA − Total 

Wind + 17 11 28 

Wind − 7 22 29 

Total 24 33 57 

 
 

 
 

Fig. 10. The system asks questions about the variables in the terminal nodes. 
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Fig. 11. Search for the relevant information. 

 
 

The evidence from different sources is combined using the following formula: 

CFcomb = CFold + CFnew − (CFold * CFnew)/100. 

In addition to the CF algebra, Bayesian inference technique may be added later. When all the 
evidence is collected, a forecast for the target variable is issued either in the form of odds (e.g., 
strong versus weak year class of walleye pollock) or probabilities. The user can also open the 
Custom Property window (Fig. 12) and check the information about individual variables and 
rules, or open the report that traces the logic behind the forecast (Fig. 13).  
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Fig. 12. Displaying information about the variables and rules in the property window.
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Fig. 13. An example of the report that traces the inference procedure. 
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